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Abstract: If the Alday-Maldacena version of string/gauge duality is formulated as an

equivalence between double loop and area integrals a la arXiv: 0708.1625, then this pure

geometric relation can be tested for various choices of n-side polygons. The simplest

possibility arises at n = ∞, with polygon substituted by an arbitrary continuous curve. If

the curve is a circle, the minimal surface problem is exactly solvable. If it infinitesimally

deviates from a circle, then the duality relation can be studied by expanding in powers

of a small parameter. In the first approximation the Nambu-Goto (NG) equations can

be linearized, and the peculiar NG Laplacian ∆NG = ∆0 − D2 + D plays the central

role. Making use of explicit zero-modes of this operator (NG-harmonic functions), we

investigate the geometric duality in the lowest orders for small deformations of arbitrary

shape lying in the plane of the original circle. We find a surprisingly strong dependence of

the minimal area on regularization procedure affecting ”the boundary terms” in minimal

area. If these terms are totally omitted, the remaining piece is regularization independent,

but still differs by simple numerical factors like 4 from the double-loop integral which

represents the BDS formula so that we stop short from the first non-trivial confirmation of

the Alday-Maldacena duality. This confirms the earlier-found discrepancy for two parallel

lines at n = ∞, but demonstrates that it actually affects only a finite number (out of

infinitely many) of parameters in the functional dependence on the shape of the boundary,

and the duality is only slightly violated, which allows one to call this violation an anomaly.
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1. Introduction

1.1 Alday-Maldacena duality

The Alday-Maldacena version [1] of the string-gauge duality [2] is one of the most spectacu-

lar new hypotheses of the last year and it naturally attracts an increasing attention [3]–[33].

We prefer to formulate it in a pure geometric form [12]:

Conjecture: an explicit regularization can be found such that for any polygon Π which

is made from n light-like segments in Minkowski space R4
−+++

DΠ ≡
(∮ ∮

Π

d~yd~y ′

(~y − ~y ′)2

)∣
∣
∣
∣
regularized

?
=
(

Minimal Area
)∣
∣
∣
regularized

≡ AΠ (1.1)

where AΠ is (regularized) area of a minimal surface in the bulk AdS5 space with the metric

ds2 =
dr2 + d~y 2

r2
, d~y 2 = −dy2

0 + dy2
1 + dy2

2 + dy2
3 (1.2)

bounded by the polygon Π which is located at the boundary (absolute) of the AdS5 (at

r → 0).

1.2 Comments

The Alday-Maldacena duality is motivated by considerations of the planar (N = ∞) limit

of N = 4 SYM and combines a number of different hypotheses about the non-perturbative

properties of this theory. Despite we are going to analyze (1.1) as a formal relation,

without direct reference to its physical meaning, a few remarks are still necessary to clarify

the possible subtleties of the problem. For more detailed presentation of our understanding

of physical motivation behind (1.1) see [12, 21, 26, 29].

1. Π in (1.1) is a polygon in the momentum space, formed by n null momenta of external

gluons. Therefore AdS5 space at the r.h.s. of (1.1) is dual [34, 1] to the ordinary one in

AdS/CFT correspondence [35]. Accordingly one needs to distinguish between conformal

SO(4, 2) symmetries of the bulk and momentum AdS5 spaces.
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2. The l.h.s. of (1.1) looks like a logarithm of the average of an ordinary Abelian Wilson

loop:

DΠ = log

〈

exp

{

i

∮

Π
Aµ(~y)dyµ

}〉

regularized

(1.3)

eq. (1.1) should not be confused with another well-known conjecture,

AΠ
?
= log WΠ, (1.4)

relating the r.h.s. of (1.1) to an average of the N = 4 SUSY Wilson loop

WΠ =

〈

Tr P exp

{

i

∮

Π

(

Aµ(~y)dyµ + φdl
)}〉

regularized

(1.5)

involving non-Abelian vector fields and scalars and non-trivial multi-loop diagrams.

3. The l.h.s. of (1.1) is an identical, though non-trivial, reformulation [1, 5, 6] of the

celebrated BDS conjecture [36], stating that the n-gluon MHV amplitude in N = 4 SUSY

YM in the planar limit is exactly equal to the exponential of the one-loop result, which is in

turn reduced to contribution of the ”2me” box diagrams and explicitly expressed through

dilogarithm functions [37, 38].

4. The r.h.s. of (1.1) can be considered as a version of the Gross-Mende conjecture [39]

that the high-energy asymptotics of stringy scattering amplitudes are given by exponen-

tiated minimal areas in the relevant bulk spaces with appropriate boundary conditions.

Within the N = 4 SUSY context, one can assume that the statement is true for all values

of external momenta, not obligatory large, while the ADS/CFT conjecture [35] identifies

the relevant bulk space in this case as AdS5 × S5.

1.3 Current status of the Alday-Maldacena duality

The status is somewhat controversial.

All reliable evidence in support of (1.1) is at n = 4 [1] and sometime at n = 5 [21, 16,

28]. Unfortunately, this evidence is not decisive, because at n = 4, 5 explicit expressions

are fully determined by the anomalous Ward identities [31], associated with the global

conformal invariance of the problem [5, 16, 28, 30]. For n ≥ 6 this symmetry is too small

to unambiguously constrain the answer, but in this case there is still no clear way to

explicitly evaluate the r.h.s. of (1.1). This Plateau minimal-surface problem is considered

unresolvable (in any explicit form) in flat spaces. If (1.1) was true, this would imply that

the situation is drastically different in AdS space, since the l.h.s. is an absolutely explicit

expression: the AdS Plateau problem would be exactly solvable, and this is what makes

the Alday-Maldacena hypothesis so interesting and significant far beyond N = 4 SUSY

studies. Attempts to solve the AdS Plateau problem are described in [26, 29], but they are

still far from being conclusive.

Meanwhile, the counter-arguments against (1.1) are mounting. Already known ones

can be divided into three categories.
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Counter-arguments of the first type argue that the BDS conjecture, which is behind

the l.h.s. of (1.1), contradicts some other physically-expected properties of the scattering

amplitudes for n ≥ 6, like Regge behavior [32].

The second type of counter-arguments [30] is based on results of higher-loop calcula-

tions of non-Abelian Wilson average WΠ. The claim is that DΠ 6= log WΠ, so that (1.1)

comes in contradiction with the usual belief that AΠ = log WΠ. This belief is just supported

once again by [40, 41].

The third type [23, 20] comes from attempts to evaluate AΠ for some special polygons

Π, when the AdS Plateau problem is simplified. While in [20] the boundary conditions

are considered which seem to be inconsistent with the simplest BDS conjecture (additional

restrictions on virtual momenta in the loops are imposed), the discrepancy found in [23] can

be eliminated only by an ugly change of regularization, what signals about a real problem.

All these difficulties look very serious and seem to distract people from the Alday-

Maldacena hypothesis, at least, in its simplest form (1.1). However, the above-mentioned

counter-arguments have a common drawback: they are too special to show any way out,

they can serve only to rule out formula (1.1), but can not explain how and why it should

be modified. Thus, one needs at this moment is a considerable extension of the above

counter-examples, taking them from particular selected points in the infinite-dimensional

”moduli space” of all relevant polygons Π to at least some vicinities of those: this can help

to get rid of regularization ambiguities (provided there is only a finite number of possible

counterterms) or to formulate explicit requirements to infinite-parametric regularization

schemes (if one is going to look for a resolution of emerging problems this way).

1.4 The goal of this paper: a perturbative analysis of the smooth n = ∞ limit

In this paper we are going to elaborate on the so far most constructive counter-example

to (1.1): the one found in [23] for a special rectangular configuration at n = ∞. The

specifics of this ”smooth n = ∞ limit”, see s.2.8 of [26], is that the Plateau problem can

be reduced from AdS5 to Euclidean AdS3 lying at y0 = y3 = 0, and Π in (1.1) becomes

an arbitrary curve in the plane of the complex variable z = y1 + iy2. One can apply

the methods, developed in [26, 29], to solve the Plateau problem, at least, in the from of

power series in the deviations from some exactly-solvable examples where the role of Π is

played by two parallel lines or a circle. This kind of slightly deviating boundary conditions

was called ”wavy” in [42] (see also [43]), and, in these terms, we are going to address

the problem of ”the wavy circle”. The long-rectangular (actually, the two-parallel-lines)

example of [23] would correspond to a circle of infinite radius, however, this large-radius

limit is somewhat singular and ”wavy rectangular” requires separate consideration, which

is straightforward, but left beyond the scope of the present paper.1 In this way we obtain

the l.h.s. and the r.h.s. of (1.1) for an infinitely-parametric family of wavy curves Π and

thus obtain a significantly wider information than in the previous considerations.

1One could of course use the results of [43, 42], but since the σ-model action was used there instead of

the Nambu-Goto one, there are additional sources of complications.
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Our result is somewhat surprising: we confirm that (1.1) is not true, at least, in the

most naive regularization prescription. However, even for this prescription the two sides

of (1.1) are very similar. Still, they are different, moreover, their global conformal properties

do not coincide. At the same time, we observe an unexpectedly strong dependence on the

choice of regularization prescription, what makes the hypothesis formulated in s.1.1, much

more difficult to overturn.

1.5 The main result of this paper

Our attempt to confirm relation (1.1) for a continuous curve Π = Π̄, which is an infinites-

imal deformation of a unit circle in the complex z-plane, z = y1 + iy2, with y0 = y3 = 0,

fails, but in an interesting and puzzling way: the two sides of (1.1) are different, but only

slightly different.

Namely, if Π is an image of the unit circle |ζ|2 = 1 under the conformal map z =

H(ζ) = ζ +
∑∞

k=0 hkζ
k, then

DΠ

2π
=

L

λ
− 2π − 4π

[

Q
(2)
Π − Q

(3,1)
Π − Q

(3,2)
Π

]

+ 4πQ
(4)
Π + O(h5), (1.6)

AΠ

2π
=

L

4µ
− 1 − 3

2

[

Q
(2)
Π − Q

(3,1)
Π − 4Q

(3,2)
Π

]

+ O(h4) (1.7)

We see the discrepancy between these two expressions: first the coefficients in front of the

brackets differ by a factor of κ◦ = 8π
3 , second, one of the structures in the brackets in AΠ

differs from those in DΠ by a mysterious integer factor 4. Thus, only few of infinitely many

coefficients in h-expansions are different, still the difference exists even if regularizations

are matched, κ◦λ = 4µ and nonphysical constants 2π and 1 are omitted.

Moreover, one could even think that the overall coefficient κ◦ is not a problem at

all. However, it is, if one assumes this coefficient is completely independent on the shape

of Π. Indeed, in the quadrilateral n = 4 example [1, 12, 22]2 κ� = 8 and, therefore,

κ◦ = 8π
3 = π

3 κ�. Still, one can imagine a simple dependence of this coefficient only on the

number of corners of Π to reproduce this overall difference π
3 .

In these formulas Q(p,q) are certain structures of the order hp:

Q
(2)
Π =

∞∑

k=0

Bk|hk|2,

Bk =
k(k − 1)(k − 2)

6
, (1.8)

Q
(3)
Π = Q

(3,1)
Π + Q

(3,2)
Π =

1

2

∞∑

i,j=0

Cij

(

hihj h̄i+j−1 + h̄ih̄jhi+j−1

)

,

Cij =
ij

6

(

i2 + 3ij + j2 − 6i − 6j + 7
)

(1.9)

Q
(3,2)
Π =

1

2

∞∑

i=0

Cii

(

h2
i h̄2i−1 + h̄2

i h2i−1

)

, (1.10)

2In this example, the finite piece of the double loop integral is −2(log s/t)2 (see (2.16)-(2.17) and (2.13)

in [12]), while that of the minimal area is −1/4(log s/t)2 [1, 22], compare with −1/2(log s/t)2 in the σ-model

case [12, (4.26)].
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while Q
(3,1)
Π is the sum of off-diagonal terms,

Q
(3,1)
Π =

∞∑

i<j

Cij

(

hihj h̄i+j−1 + h̄ih̄jhi+j−1

)

(1.11)

Different coefficients in front of Q
(3,1)
Π and Q

(3,2)
Π in AΠ imply that the tensor C

(A)
ij =

3Q
(3,1)
ij + 12Q

(3,2)
ij , which would play the role of Cij = C

(D)
ij = Q

(3,1)
ij + Q

(3,2)
ij in (1.7), is not

just a polynomial in the indices i, j.

Q
(4)
Π = (h2

1 + h̄2
1)Q

(2)
Π +

1

4

∞∑

i,j,k,l=0

i+j=k+l

Uij;klhihj h̄kh̄l

+
1

6

∞∑

i,j,k=0

Vijk

(

hihjhkh̄i+j+k−2 + h̄ih̄j h̄khi+j+k−2

)

,

Uij;kl = δi+j,k+l

(

kCij −
1

6
(i + j)(k + 1)k(k − 1)(k − 2)

+
1

10
(k + 2)(k + 1)k(k − 1)(k − 2)

)

, for k ≤ i, j,

Vijk =
ijk

3

(

i2 + j2 + k2 + 3(ij + jk + ik) − 9(i + j + k) + 15
)

(1.12)

The complete expression for Uij;kl is restored by the symmetry under the permutation

(i, j) ↔ (k, l). Note that the naive continuation of formula (1.12) to the whole region of

indices leads to the non-symmetric Uij;kl. Therefore, in this case already Uij;kl = U
(D)
ij;kl is

not a polynomial of indices i, j, k, l. Terms of the order h4 in AΠ still need to be calculated,

presumably, they will also be made from the same coefficients Uij;kl and Vijk but with a

few extra overall coefficients as it happens to the h2 and h3 terms.

At least, the h̄-linear terms in DΠ with all possible powers of h can be summed up to

give

∮

(z̄ − ζ̄)Sζ{z}ζ2dζ =

∮

h̄(ζ̄)

[

h′′′(ζ)

1 + h′(ζ)
− 3

2

(
h′′(ζ)

1 + h′(ζ)

)2
]

ζ2dζ (1.13)

=
∞∑

p=1

(−)p−1
∞∑

i1,...,ip=0

i1 . . . ip
6p

( p
∑

a=1

i2a + 3

p
∑

a<b

iaib

−3p

p
∑

a=1

ia +
p(3p + 1)

2

)

h11 . . . hip h̄i1+...+ip+1−p

The above coefficients A,C, V arise in particular terms of this formula, with p = 1, 2, 3

respectively and

Sζ{z} =
z′′′

z′
− 3

2

(
z′′

z′

)2

= − 1

z′2
Sz{ζ}, Sζ{z}

dζ
√

dz/dζ
= −Sz{ζ}

dz
√

dζ/dz
(1.14)

is the Schwarzian derivative, which vanishes identically for rational transformations z =

ζ + h(ζ) = aζ+b
cζ+d . Of course, there is a complex conjugate contribution which is linear in

– 6 –
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h and sums up all possible powers of h̄. It is unclear if a similar local expression can be

found for all other terms hph̄q in DΠ with both p, q ≥ 2. Even less clear is the situation

with AΠ.

We use λ and µ regularizations at the l.h.s. and at the r.h.s. of (1.1) respectively:

DΠ =

(∮

Π

∮
d~yd~y′

(~y − ~y′)2 + λ2

)
λ=µ
=

∫ √

|∂H|2(|∂H|2 + |∂r|2)
r2 + µ2

d2ζ = AΠ (1.15)

Divergent contributions are proportional to the length of the curve Π,

L

2π
= 1 +

1

2
(h1 + h̄1) −

1

8
(h2

1 + h̄2
1) +

1

4

∞∑

k=1

k2|hk|2
|1 + h1|2

− 1

4
h1h̄1

(
h1 + h̄1

)
+

1

16
(h3

1 + h̄3
1) −

− 1

16

∞∑

k,l=2

kl(k + l − 1)

[

hkhlh̄k+l−1

(1 + h1)
2 (1 + h̄1

) +
h̄kh̄lhk+l−1

(
1 + h̄1

)2
(1 + h1)

]

+ O(h4)

=
√

1 + h1

√

1 + h̄1

(

1 +
1

4

∑

k=2

k2|hk|2
|1 + h1|2

− 1

16

∞∑

k,l=2

kl(k + l − 1)

[
hkhlh̄k+l−1

(1 + h1) |1 + h1|2
+

h̄kh̄lhk+l−1
(
1 + h̄1

)
|1 + h1|2

]

+ . . .

)

(1.16)

To summarize, the functional dependencies on arbitrary shape of the curve Π in DΠ

and AΠ are almost the same, but some overall coefficients are different, moreover, the

number of different coefficients can grow with the order of h-corrections.

It is unclear if this difference can be somehow absorbed into the change of regularization

prescriptions. Moreover, if instead of µ-regularization at the r.h.s. of (1.15), one cuts the

area integral at |ζ| = 1 − c, the answer for AΠ changes drastically, leaving no observable

similarity to DΠ. Worse than that, while the IR-finite part of DΠ is invariant w.r.t. the

projective transformations δz = ǫ− + ǫ0z + ǫ+z2, i.e. is annihilated by the three SL(2)

generators

Ĵ− =
∂

∂h0
,

Ĵ0 =
∂

∂h1
+

∞∑

k=0

hk
∂

∂hk
,

Ĵ+ =
∂

∂h2
+ 2

∞∑

k=0

hk
∂

∂hk+1
+

∞∑

k,l=0

hkhl
∂

∂hk+l
, (1.17)

this is not true for the IR-finite part of AΠ (actually in the h3 approximation Ĵ+Afinite
Π 6= 0

only because of a wrong coefficient in front of a single term h2
2h̄3, but there can be more such

bad terms when the power of h increases). In fact, this does not immediately contradict

the conformal invariance of AΠ, proved in [31]: the conformal symmetry of [31] acts on AΠ

in a more sophisticated way than (1.17).

We refrain from making far-going conclusions from these surprising results before they

are independently checked. In case if they are confirmed, they need and can be straightfor-

wardly extended in two obvious directions: to higher orders in h-expansion and to ”wavy

– 7 –
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lines”. This can help to better understand the structure of the difference between AΠ and

DΠ and hopefully find a simple formulation of the anomaly in the Alday-Maldacena

duality (1.1). Of course, this anomaly should be also extended to finite-n polygons Π.

We emphasize that the apparent similarity between (1.7) and (1.6) does not allow one to

simply reject (1.1) (say, by claiming the failure of the BDS conjecture), the relation looks

too close to truth to be simply ignored: one should rather search for overlooked corrections,

which can be responsible for the small discrepancy between the l.h.s. and the r.h.s. of (1.1).

1.6 Plan of the paper

Below in this paper we provide a rather detailed derivation of formulas (1.6) in section 3

and (1.7) in section 4, ending up with two simple MAPLE programs which can be used for

double-check and generalizations. These derivations are preceded in section 2 by a plan

of such calculation, commenting on various semi-technical issues, which can be useful for

further generalizations. Then, there is a brief discussion of global conformal symmetry in

s.5. Finally, the four appendices contain the derivation of formula for the circumference of

the wavy circle and other local counterterms in terms of parameters of the conformal map,

an alternative calculation of DΠ using a different regularization, a discussion of another,

rectangular example that allows one to test formula (1.1), [23] and two MAPLE programs

that allow one to calculate AΠ and DΠ.

2. Wavy circle: the scheme of calculations

2.1 NG equation for y0 = 0

NG action with y0 = y3 = 0 is quite simple,
∫ √

1 + (∂1r)2 + (∂2r)2

r2
dy1dy2 (2.1)

and equation of motion is:

r∂2r + 2(∂r)2 + 2 + r∂ir∂jr
(

δij∂
2r − ∂2

ijr
)

= 0 (2.2)

or

r∂ir∂jr∂
2
ijr =

(

1 + (∂r)2
)(

2 + r∂2r
)

(2.3)

There are a few exactly solvable examples that satisfy both the NG equation (2.2) and

the boundary condition r(y2 = 1) = 0. Unfortunately, they do not possess free parameters

that can be used to actually compare the l.h.s. and the r.h.s. of (1.1). In particular, the

surface

r2 = R2 − y2 = R2 − y2
1 − y2

2 = R2 − zz̄ (2.4)

is a solution to (2.2). It, indeed, provides a minimum of the regularized action. Later on,

we put R = 1. In fact, changing R is the zero-mode generated by the coefficient h1 of the

conformal map. In fact, as illustrated by (1.16), h1 enters all formulae in a special way,

different from all other hk. Therefore, for the sake of simplicity, we always put h1 = h̄1 = 0

and restore non-vanishing h1 and h̄1 only in s.5.

– 8 –
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2.2 Wavy circle: area calculation

Here we consider an arbitrary infinitesimally deformed circle and describe how to calculate

its regularized minimal area in the first non-trivial — quadratic — order in deformation

parameters.

To this end, we need to resolve the following problems:

• Choose an adequate parametrization of the deformation. We do this by considering

the conformal map z = H(ζ) of interior of the unit circle in the complex ζ-plane into

the domain bounded by the deformed curve Π in the complex z-plane. The map is

an infinitesimal deformation of the unit map, H(ζ) = ζ + h(ζ) and

h(ζ) =

∞∑

k=0

hkζ
k (2.5)

is a small function-valued parameter.

• Find the shape of the minimal surface r2(z, z̄) = 1 − ζζ̄ + a(ζ, ζ̄) by solving the NG

equation for a(ζ, ζ̄) and imposing the boundary condition

a
(

eiφ, e−iφ
)

= 0 (2.6)

For h 6= 0 vanishing everywhere a = 0 is not a solution, and one needs to calculate a

up to the second order in h. The relevant form of the NG equation in this case is

∆NG

(

a + u(h)
)

= O(a2, ah, h2) (2.7)

where ∆NG is a linear differential operator (already found in [29])

∆NG = ∆0 −D2 + D = 4∂∂̄ − z̄2∂̄2 − 2zz̄∂∂̄ − z2∂2 (2.8)

expressed through the ordinary Laplace and dilatation operators ∆0 = ∂2
1 + ∂2

2 and

D = y1∂1 + y2∂2, and

u(h) = 2ζζ̄
∞∑

k=1

Re
(

hkζ
k−1
)

(2.9)

is linear in h.

A. As a first step towards solving (2.7) we can put h = 0 and neglect the quadratic

term Q(a), i.e. consider the equation

∆NG(a) = 0 (2.10)

Its generic solution was found in [26, 29] in the form

a(ζ, ζ̄) = 2
∞∑

k=0

Re
(

akζ
k
)

Fk(ζζ̄) (2.11)
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where

Fk(x) =
(1 + k

√
1 − x)(1 −

√
1 − x)k

xk
∼ 2F1

(
k

2
,
k − 1

2
; k + 1;x

)

(2.12)

are specific hypergeometric functions expressed through the Legendre (spherical)

functions Q
−3/2
k−1/2

2F1

(
k

2
,
k − 1

2
; k + 1;x

)

= 2kk(k − 1)i

√

2

π

(
1 − x

x

) 3
4

x
1−k
2 Q

−3/2
k−1/2

(
1√
x

)

(2.13)

We normalize Fk(x) by the condition

Fk(1) = 1, (2.14)

i.e. divide the hypergeometric series at the r.h.s. of (2.12) by their values at

x = 1,

2F1(a, b; c; 1) =
Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
, (2.15)

Re c > Re b > 0, Re (c − a − b) > 0

2F1

(
k

2
,
k − 1

2
; k + 1; 1

)

=
2k

k + 1
(2.16)

In particular,

F0(x) = 1,

F1(x) = 1,

F2(x) =
−2 + 3x + 2(1 − x)3/2

x2
,

F3(x) =
−8 + 12x − 3x2 + 8(1 − x)3/2

x3
,

F4(x) =
−24 + 40x − 15x2 + 8(6 − x)(1 − x)3/2

x4
,

. . . (2.17)

In the vicinity of x = 1 these Fk behave as follows:

at x = 1 − c2 Fk = 1 − k(k − 1)

2
c2 − k(k2 − 1)

3
c3 + O(c4) (2.18)

Of course, for h = 0 the boundary condition (2.6) implies that in (2.11) all

ak = 0.

B. Since in neglect of its r.h.s. (2.7) differs from (2.10) only by a shift of a, we

can use the same result (2.11) for a + u(h). Moreover, the explicit form (2.9)
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of the shift u(h) is very simple, so that one can easily impose the boundary

conditions (2.6)

a(ζ, ζ̄) = 2

∞∑

k=1

Re
(

hkζ
k−1
)

Ak(ζζ̄) + O(h2),

Ak(x) = Fk−1(x) − x (2.19)

and, according to (2.18),

at x = 1 − c2 Ak = −k(k − 3)

2
c2 +

k(k − 1)(k − 2)

3
c3 + O(c4),

A′
k =

k(k − 3)

2
− k(k − 1)(k − 2)

2
c + O(c2) (2.20)

• Evaluate (regularized) effective action up to the h2-terms. It diverges and we reg-

ularize it. It can be done in many different ways, here we use the two most naive

possibilities which are, however, representative enough to illustrate the typical fea-

tures. As we shall see, the result drastically depends on the choice of regularization.

According to [1], the regularization procedure implies modifying the action but using

the old solution (which is, definitely, a somewhat controversial prescription).

According to [44] the most appropriate way to regularize AdS quantities is to make

a shift away from the boundary at r = 0 to r = ǫ: dependence of the bulk action on

the shift is the counterpart of renormalization group for the boundary theory.

The question in our case is where we impose the vanishing boundary conditions: on

the boundary or on the shifted boundary?

Another question is what kind of shift we should perform: it can be of an arbitrary

shape and the corresponding renormalization group is in fact infinite-dimensional [45].

The conventional one-parametric renormalization subgroup corresponds to a kind of

a ”constant” shift.

Of this large variety of possibilities, we consider two different regularizations:

c-regularization: boundary condition at the original boundary, the shift is ”con-

stant”, compare with RG of [44] and with [1]. Implies drastic violation of (1.1) in

the case of deformed circle. We make this regularization by cutting the integral over
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x ≡ ζζ̄ at 1 − c2 with non-vanishing c,3

SNG{a, h} =

∫

|ζ|2≤1−c2

√

|∂H|2
(

|∂H|2 + 4|∂r|2
)

r2
d2ζ (2.22)

=

∫

|ζ|2≤1−c2

√

|∂H|2
(

r2|∂H|2 + |∂r2|2
)

r3
d2ζ

For

r2 = 1 − |ζ|2 + a(ζ, ζ̄) (2.23)

the action can be expanded as

SNG{a, h} =

∫

|ζ|2≤1−c2

√
√
√
√

|∂H|2
(

|∂H|2
(
1−|ζ|2

)
+β|ζ|2+|∂H|2a−βDa+β|∂a|2

)

(1−|ζ|2 + a)3/2
d2ζ

= Scirc + S0{h} + S1{a, h} + S2{a} + O(a3−jhj) (2.24)

Here Sj{a, h} is of degree j in a and of degree 0, . . . , 2 − j in h and we specially

distinguish the contribution that does not depend on h at all, Scirc. As a function of

regularization parameter c, each

Sj =
1

c
Ssing

j + Sreg
j + O(c) (2.25)

After substitution of (2.19) each Sj becomes a function of the boundary shape h(z):

Sj{a(h), h} = 2π

∞∑

k=2

|hk|2σ(j)
k + O(h3) (2.26)

3Following [1], one would also have to introduce a c-dependent factor β(c) = 1 + β1c + O(c2) into the

integrand of action:

r

|∂H |2
“

|∂H |2 + 4|∂r|2
”

r2
→

r

|∂H |2
“

r2|∂H |2 + β|∂r2|2
”

r3
(2.21)

This, however, does not lead to any essential effects later on, and we ignore such a modification here. In

fact, the role of β1 would be just to shift σreg
j → σreg

j + β1

2
σsing

j in the formulas below. In fact, β1 has

dimension length−1 and can hardly be constant.
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Terms of the order O(c) are omitted, with this accuracy one has

σ
(0)
k = k2

∫ 1−c2

0

xk−1dx

(1 − x)3/2

(

1 − x

2
− x2

4

)

=
k2

2c
+ I1,

σ
(1)
k = − kAkx

k+1

(1 − x)3/2

∣
∣
∣
∣
x=1−c2

︸ ︷︷ ︸

+
k

2

∫ 1−c2

0

Akx
k−1dx

(1 − x)3/2

(

(k + 1)x − 4
)

=
k2(k − 3)

2c
− k2(k − 1)(k − 2)

3
︸ ︷︷ ︸

+2I2,

σ
(2)
k =

xk−1A2
k

2(1 − x)5/2

(

(k − 2)x2 − 2(k − 3)x + (k − 1)
)
∣
∣
∣
∣
x=1−c2

︸ ︷︷ ︸

−k

4

∫ 1−c2

0

Akx
k−1dx

(1 − x)3/2

(

(k + 1)x − 4
)

=
3k2(k − 3)2

8c
− k2(k − 1)(k − 2)(k − 3)

2
︸ ︷︷ ︸

−I2 (2.27)

where we ”underbraced” the boundary contributions (which come from the integra-

tion by parts). The density integrals

I1 = k2

∫ 1

0

dx

(1 − x)3/2

{

xk−1

(

1 − x

2
− x2

4

)

+
x − 2

4

}

=
4k2

3



1 + 3

k−1∑

j=1

(−)jCj
k−1

2j2 + 3j − 1

(2j − 1)(2j + 1)(2j + 3)



 , (2.28)

I2 =
k

2

∫ 1

0

dt

t2

((
1 + (k − 1)t

)
(1 − t)k−1 − (1 − t2)k

)(

(k − 3) − (k + 1)t2
)

(2.29)

are rather complicated, however, their sum is simple:

I1 + I2 = −k(k − 1)(k − 2)

2
(2.30)

Non-transcendental boundary terms contribute

−k2(k − 1)(k − 2)

3
− k2(k − 2)(k − 2)(k − 3)

2
= −k(3k − 7)

k(k − 1)(k − 2)

6
(2.31)

To summarize, the singular term is

σsing
k =

k2(3k2 − 14k + 19)

8c
=

k2

2c
+

3k2(k2 − 4k + 5)

8c
− k3

4c
︸ ︷︷ ︸

(2.32)

while the regular term is

∞∑

k=2

σreg
k |hk|2 = −

∞∑

k=3

(3k2 − 7k
︸ ︷︷ ︸

+3)
k(k − 1)(k − 2)

6
|hk|2 (2.33)
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µ-regularization: the better one, no direct relation to [44], provides (1.1) for de-

formed circle up to the coefficient 3 in front of the h2 terms. The regularization

implies just replacing r2 → r2 + µ2 in the denominator of the integrand of action:

SNG{a, h} =

∫

|ζ|2≤1

√

|∂H|2
(

|∂H|2 + 4|∂r|2
)

r2 + µ2
d2ζ

=

∫

|ζ|2≤1

√

|∂H|2
(

r2|∂H|2 + |∂r2|2
)

r(r2 + µ2)
d2ζ (2.34)

In the case of µ-regularization the boundary (underlined) terms in (2.27) do not

contribute, and the full answer is

Areaµ =
π2

µ

(

1 +
1

4

∞∑

k=2

k2|hk|2
)

+ π (I1 + I2) − 2π + O(h3) (2.35)

The combination
(

π2

µ − 2π
)

here is Scirc.

One would expect that the divergent part of the result should be proportional to the

length of the wavy circle. This is, indeed, the case for the µ-regularization, since the

length of the contour is (see appendix I)

L

2π
=

∮

Π
dl = 1 +

∞∑

k=2

k2|hk|2
4

+ O(h3) (2.36)

and

Areaµ =
πL

2µ
− π

∞∑

k=3

k(k − 1)(k − 2)

2
|hk|2 − 2π + O(h3) (2.37)

Comment. Note that the result for the c-regularization is not same good. It is not

proportional to the length and, what is much worse, one can hardly find local bound-

ary counterterms to treat the singularity. Indeed, the only other possible candidate

could be integral of logarithm of the scalar curvature

κ =
|Im(z̈ ˙̄z)|

|ż|3 (2.38)

However, this integral

∮

Π
log κdl ∼

∞∑

k=2

k2(k2 − 4k + 5)|hk|2 (2.39)

along with the length term, leave the unbalanced singular term −∑ k3

4c |hk|2,
see (2.32).
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The main lesson one can get from this consideration is that, generally speaking, the

result strongly depends on the regularization procedure. However, we expect that for the

class of admissible regularizations, i.e. such that the surface terms vanish, the result for

the finite part of the minimal area would not depend on the regularization. For example,

our c-regularization implied that the boundary condition is set at the original boundary.

One can instead shift the boundary conditions to the regularized boundary what effectively

corresponds to omitting the surface terms. As we saw above, this would lead to the same

result as for the µ-regularization.

2.3 Double countour integral

Above results for the area should now be compared with the (regularized) double loop

integral evaluated with the same accuracy up to the h2-terms. The result for the finite

piece is4

∞∑

k=2

|khk|2
∫

dϕ

4 sin2ϕ

(

cos(2kϕ) − 2σk(ϕ) cos
(
(k + 1)ϕ

)
+ σ2

k(ϕ) cos(2ϕ)
)

(2.42)

= −2π

∞∑

k=3

k(k − 1)(k − 2)

6
|hk|2

Here σk(ϕ) ≡ sinkϕ
k sin ϕ . The divergent piece (see details in (3.8) below) is L

λ , for example,

from

∫ 2π

0

Bdϕ

B sin2 ϕ + λ2
=

2π
√

B

λ
+ O(λ) (2.43)

and
∮ √

B(Φ)dΦ = L. No term λ−1
∮

log κdl is present.

2.4 Double integral vs. minimal area

Now, comparing the results of two calculations for the double contour integral and for the

area, one can see another problem with the c-regularization: the finite piece it gives has

4To obtain this result, one uses the following integrals:

Z „

sin(kϕ)

sin ϕ

«2
dϕ

2π
= k,

Z

sin
`

(2k + 1)ϕ
´

− (2k + 1) sin ϕ

sin3 ϕ

dϕ

2π
= −2k(k + 1) (2.40)

Z

cos
`

(k + 1)ϕ
´

sin(kϕ) − k sin ϕ

sin3 ϕ

dϕ

2π
= −k(k + 1),

Z

cos(2ϕ) sin2(kϕ) − k2 sin2 ϕ

sin4 ϕ

dϕ

2π
= −

2k(k2 + 2)

3
(2.41)
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nothing to do with the result for the double contour integral (1.6). Indeed,

σreg
k − Dk = −(3k2 − 7k + 4)

k(k − 1)(k − 2)

6
+

k(k − 1)(k − 2)

6

= −(3k2 − 7k + 2)
k(k − 1)(k − 2)

6

=
k(3k − 1)(k − 1)(k − 2)2

6
(2.44)

which can not be removed into β1

2 σsing
k .

At the same time, the case of Areaµ is much better, though differs by a factor from

the double integral:

Areaµ =
πL

2µ
− π

∞∑

k=3

k(k − 1)(k − 2)

2
|hk|2 − 2π + O(h3) (2.45)

while

Dλ =
2πL

λ
− 2(2π)2

∞∑

k=3

k(k − 1)(k − 2)

6
|hk|2 − (2π)2 + O(h3) (2.46)

By all these reasons, we choose in further calculations only the µ-regularization, keeping

in mind that the final result can drastically depend on the regularization, and it is not

guaranteed that the µ-regularization is the best/correct one. Anyhow, in this regularization

a discrepancy in the overall coefficient occurs in the h2 terms between (2.45) and (2.46).

If our argument at the end of subsection 2.2 about regularization independence of Areaµ

is taken seriously, this discrepancy is unavoidable and becomes a kind of anomaly, slightly

violating the conjectured form (1.1) of the Alday-Maldacena duality.

2.5 Further corrections

The next step is to check if the same discrepancy is presented in higher orders in h. Naively,

one would expect that, in order to obtain h3-corrections to Aµ, one needs to take into

account higher terms in the NG equation etc. However, it turns out that these corrections

can be obtained with the already obtained solution (2.11). To see this, let us introduce the

notation S(k,l) for the term in action of the order akhl. Then, up to the third order, the

action is

S =
3∑

l,k=1

S(l,k) (2.47)

and the solution to the equation of motion a(1) linear in h is determined from the variation

(note that S(1,0) = 0)

(
δS(1,1)

δa
+

δS(2,0)

δa

)∣
∣
∣
∣
a=a(1)

= 0 (2.48)
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In order to find the next correction, a(2) one needs to insert a = a(1) +a(2) into the equation

δS(1,1)

δa
+

δS(2,0)

δa
+

δS(2,1)

δa
+

δS(1,2)

δa
+

δS(3,0)

δa
= 0 (2.49)

etc. Now one needs to calculate the value of action (i.e. the minimal area) on the solution

A =

3∑

l,k=1

S(l,k)

(

a(1) + a(2) + . . .
)

= A(2) + A(3) + . . . (2.50)

Note that the part of the cubic correction A(3) that involves a(2) is linear in it, and,

therefore, is proportional to
(

δS(1,1)

δa +
δS(2,0)

δa

)∣
∣
∣
a=a(1)

which vanishes by the equation of

motion, (2.48). Therefore, only a(1) contributes to the minimal area up to the third order,

and one can use the known solution, (2.11) when evaluating the minimal area.

Thus, one just needs to insert solution (2.11) into the action and expand it up to h3

terms. Similarly, one needs to calculate the double contour integral Dµ up to terms of

the same cubic order. This can be done by pen, or with the computer (the corresponding

MAPLE programs can be found in appendix IV), the results being formulas (1.7) and (1.6).

In the latter case, the h2 terms and some other contributions of higher order are also

presented in order to give a flavour of how they look like. However, in order to include

higher order (quartic) terms into the expression for Aµ, one would need to find corrections

to the NG solution which is a tedious problem. Here we restrict ourselves only to the cubic

terms.

3. Double integral: technicalities

3.1 BDS formula and double loop integral

In the (homogeneous) n = ∞ case the BDS formula immediately leads to the double

integral, hence, the calculation of [6] can be bypassed. According to [12], the BDS formula

is a sum over 4-boxes and each 4-box degenerates into a chordae of the curve Π when

n → ∞. The contributions of each 4-box consists of dilogarithmic and logarithmic parts,

which degenerate into

Li2

(

1 − exp(τl + τs − τm1 − τm2)
)

n→∞−→ Li2

(

1 − exp

(

δφδφ′ ∂
2 log t(φ, φ′)

∂φ∂φ′

))

(3.1)

= δφδφ′ ∂
2 log t(φ, φ′)

∂φ∂φ′ + O(δφ3)

and

(τl − τm1)(τl − τm2)
n→∞−→ δφδφ′ ∂ log t(φ, φ′)

∂φ

∂ log t(φ, φ′)
∂φ′ + O(δφ3) (3.2)

respectively. Here t = |z(φ) − z(φ′)|2 is the squared length of the chordae, τ = log t.

Adding the dilogarithmic and logarithmic contributions and summing over chordae, one
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straightforwardly reproduces the double contour integral

∮ ∮

Π
dφdφ′

(
∂2 log t(φ, φ′)

∂φ∂φ′ +
∂ log t(φ, φ′)

∂φ

∂ log t(φ, φ′)
∂φ′

)

=

∮ ∮

Π
dφdφ′ 1

t

∂2t(φ, φ′)
∂φ∂φ′

=

∮ ∮

Π

Re(d~yd~y′)
(~y − ~y′)2

(3.3)

3.2 Double loop integral for the wavy circle

The necessary ingredients of the double integrand are

|z − z′|2 = 4 sin2 ϕ

{

1 +
∑

k

k
(

hke
i(k−1)Φ + h̄ke

−i(k−1)Φ
)

σk(ϕ) (3.4)

+
∑

k,l

klhkh̄lσk(ϕ)σl(ϕ)ei(k−l)Φ

}

with φ = Φ − ϕ, φ′ = Φ + ϕ, σk(ϕ) = sinkϕ
k sin ϕ and

1

2
(dzdz̄′+dz̄dz′) = 2dΦdϕ

{

cos(2ϕ)+
∑

k

k
(

hke
i(k−1)Φ + h̄ke

−i(k−1)Φ
)

cos(k+1)ϕ (3.5)

+
∑

k,l

klhkh̄le
i(k−l)Φ cos(k + l)ϕ

}

Now one needs to regularize the integral and, then, to calculate it (we remind that h1 =

h̄1 = 0 to simplify formulae)

DΠ =
1

2

∮ ∮
dzdz̄′ + dz̄dz′

|z − z′|2 + λ2
(3.6)

= 2

∮

dΦ

∮

dϕ

cos(2ϕ)+
∑

k k
(
hkei(k−1)Φ+h̄ke

−i(k−1)Φ
)
cos(k+1)ϕ+

∑

k,l klhkh̄le
i(k−l)Φ cos(k+l)ϕ

4 sin2 ϕ
(

1+
∑

k k
(
hkei(k−1)Φ+h̄ke−i(k−1)Φ

)
σk(ϕ)+

∑

k,l klhkh̄lσk(ϕ)σl(ϕ)ei(k−l)Φ
)

+ λ2

= 2

∮

dΦ

∮
dϕ cos(2ϕ)

4 sin2 ϕ + λ2

B(ϕ,Φ)

+4π

∞∑

k=1

|khk|2
∫

dϕ

4 sin2ϕ

(

cos(2kϕ) − 2σk(ϕ) cos
(
(k + 1)ϕ

)
+ σ2

k(ϕ) cos(2ϕ)
)

B(ϕ,Φ) ≡ 1+
∑

k

k
(

hke
i(k−1)Φ+h̄ke

−i(k−1)Φ
)

σk(ϕ)+
∑

k,l

klhkh̄lσk(ϕ)σl(ϕ)ei(k−l)Φ (3.7)

The second term in (3.7) is finite, we discussed it above in subsection 2.3, while the first
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one diverges and is equal to

2

∮

dΦ

∮
dϕ cos(2ϕ)

4 sin2 ϕ + λ2

B(ϕ,Φ)

= 2

∮

dΦ

(

π
√

B(0,Φ)

λ
− π

)

+ O(λ)

= 4π

(
π

λ

[

1 +
1

4

∑

k

k2|hk|2
]

− π

)

+ O(λ)

=
2πL

λ
− 4π2 + O(λ) (3.8)

The constant 4π2 can be removed, e.g., by the proper choice of β1 (see footnote 2) and we

ignore it from now on.

One can also try other regularizations in calculating the double loop integral. However,

as we demonstrate in appendix II, using a counterpart of the c-regularization does not

change the result.

4. Minimal area: technicalities

Here we reproduce some technicalities of calculation of the minimal area skipped in section

2.

First of all, we construct the solution to the NG equation in the second order in h and,

then, expand the action up to the same second order and reduce the integrals emerging

to (2.27).

4.1 Approximate NG equation

We are interested in the contribution ∼ h2 to the regularized NG action. Solving the NG

equation we obtain

a = (1 − ζζ̄)



1 +
∑

k≥0

Re(akhk) +
∑

k,l≥0

Re(aklhkhl + ãklhkh̄l) + O(h3)



 (4.1)

For ∂H = 1:

∆NGa ≡
(

∆0 −D2 + D
)

a =
(

4∂∂̄ − ζ2∂2 − 2ζζ̄∂∂̄ − ζ̄2∂̄2
)

a = O(a2) (4.2)

or, with a2-terms included,

∆NGa+2
(

ζ∂̄a∂2a+ζ̄∂a∂̄2a−(ζ∂a+ζ̄∂̄a)∂∂̄a
)

+
a

1−ζζ̄

(

ζ2∂2−2ζζ̄∂∂̄ + ζ̄2∂̄2
)

a = O(a3) (4.3)

i.e.

∆NGa + 2D(∂a∂̄a) − (Da)∆0a + a∆0a − 1

1 − ζζ̄
a∆NGa = O(a3) (4.4)

(note that ∆0 = ∂2
1 +∂2

2 = 4∂∂̄, (∂ia)2 = 4∂a∂̄a, D = ζ∂+ ζ̄∂̄ and ζ2∂2 +2ζζ̄∂∂̄+ ζ̄2∂̄2 =

D2 −D).
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Now we switch on ∂H 6= 1:

|∂H|2
4(1 − ζζ̄)

{

2(|∂H|2 − 1)
(

ζζ̄ + 2|∂H|2(1 − ζζ̄)
)

− ζζ̄D
(
log(|∂H|2)

)
+ (4.5)

+∆NGa + (|∂H|2 − 1)(1 − ζζ̄)∆0a+

+

(

Da +
ζζ̄a

1 − ζζ̄

)(

2(1 − |∂H|2) + D
(
log(|∂H|2)

))

+ζζ̄
(

∂a∂̄ log |∂H|2 + ∂̄a∂ log |∂H|2
)

+

+2D(∂a∂̄a) − (Da)∆0a + a∆0a − 1

1 − ζζ̄
a∆NGa

}

= O(akh3−k)

The a-independent piece in curved brackets in (4.5) is

8

∞∑

k=1

Re
(

khkζ
k−1
)(

1 − k + 1

4
ζζ̄

)

+ O(h2) = 2∆NG

( ∞∑

k=1

Re
(

ζ̄hkζ
k
)
)

(4.6)

Thus (see (2.19))

a(ζ, ζ̄) = 2
∞∑

k=1

Re
(

hkζ
k−1
)(Fk−1(ζζ̄)

Fk−1(1)
− ζζ̄

)

+ O(h2) (4.7)

(this quantity vanishes when ζζ̄ = 1 and a(ζ, ζ̄)+ζ̄h(ζ)+ζh̄(ζ̄) = a(ζ, ζ̄)+2
∑∞

k=1 Re
(
ζ̄hkζ

k
)

is a zero-mode of ∆NG).

4.2 NG action on NG solution up to the h2 terms

∫
√

|∂H|2
(
|∂H|2 + 4∂r∂̄r

)

r2
d2ζ =

∫

√

|∂H|2
(

|∂H|2(1 − ζζ̄ + a) +
∣
∣ζ − ∂̄a

∣
∣2
)

r3
d2ζ (4.8)

=

∫

√

|∂H|2
(

|∂H|2+ζζ̄
(
1−|∂H|2

)
+a|∂H|2−Da+|∂a|2

)

(1−ζζ̄)3/2

×
(

1− 3a

2(1 − ζζ̄)
+

15a2

8(1 − ζζ̄)2
+ O(a3)

)

d2ζ

At the moment we ignore regularization, it can be easily restored. Under the root sign one

has up to the second order in h:

(

1 + (∂h + ∂h) + |∂h|2
)

×

×
(

1 + (∂h + ∂h)(1 − ζζ̄) + |∂h|2(1 − ζζ̄) + (a −Da) + |∂a|2 + a(∂h + ∂h)
)

(4.9)

= 1 +
(

a −Da + (∂h + ∂h)(2 − ζζ̄)
)

+
(

(∂h + ∂h)2(1 − ζζ̄) + |∂h|2(2 − ζζ̄) + 2(∂h + ∂h)a − (∂h + ∂h)Da) + |∂a|2
)

– 20 –



J
H
E
P
0
7
(
2
0
0
8
)
0
2
4

and the square root is equal to

1 +
1

2

(

a −Da + (∂h + ∂h)(2 − ζζ̄)
)

+ (4.10)

+
1

8

(

4(∂h + ∂h)2(1 − ζζ̄) + 4|∂h|2(2 − ζζ̄) + 8(∂h + ∂h)a − 4(∂h + ∂h)Da) +

+4|∂a|2 −
(
a −Da + (∂h + ∂h)(2 − ζζ̄)

)2
)

= 1 +
1

2

(

a −Da + (∂h + ∂h)(2 − ζζ̄)
)

+
1

8

(

4|∂a|2 − (a −Da)2
)

+

+
1

8

(

4|∂h|2(2 − ζζ̄) − (ζζ̄)2(∂h + ∂h)2 + 2(2 + ζζ̄)(∂h + ∂h)a − 2ζζ̄(∂h + ∂h)Da
)

Now we substitute

∂h =
∞∑

k=1

khkζ
k−1,

∂h + ∂h =

∞∑

k=1

2kRe(hkζ
k−1),

a = 2

∞∑

k=1

Re(hkζ
k−1)Ak(ζζ̄),

Da = 2

∞∑

k=1

Re(hkζ
k−1)

(

(k − 1)Ak(ζζ̄) + 2ζζ̄A′
k(ζζ̄)

)

,

Da − a = 2

∞∑

k=1

Re(hkζ
k−1)

(

(k − 2)Ak(ζζ̄) + 2ζζ̄A′
k(ζζ̄)

)

,

∂a =

∞∑

k=2

(k − 1)hkζk−2Ak(ζζ̄) + 2ζζ̄

∞∑

k=1

Re(hkζk−2)A′
k(ζζ̄) (4.11)

(note that there is no singular term with ζ−1 in the last line) and perform angular inte-

gration. Then the term linear in h vanishes (it is proportional to h1 and h̄1 which we put

equal to zero), and the h2-term in the action is proportional to:

∞∑

k=2

|hk|2
∫ 1

0

ρdρ

(1 − ρ2)3/2

{

ρ2(k−2)

(
(k − 1)2

2
A2

k + (k − 1)ρ2AkA
′
k + ρ4(A′

k)
2

)

(4.12)

−1

4
ρ2(k−1)

(

(k − 2)Ak + 2ρ2A′
k

)2
+

+k2ρ2(k−1)
(

1 − 1

2
ρ2
)

− 1

4
k2ρ4ρ2(k−1)

+

(

1 +
1

2
ρ2

)

kρ2(k−1)Ak − 1

2
kρ2k

(

(k − 1)Ak + 2ρ2A′
k

)

−

+3
1

1 − ρ2

(
1

2
ρ2(k−1)Ak

(

(k − 2)Ak + 2ρ2A′
k

)

−

−
(

1 − 1

2
ρ2

)

ρ2(k−1)kAk

)

+
15

4(1 − ρ2)2
ρ2(k−1)A2

k

}
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The terms independent on Ak and their derivatives are collected into σ
(0)
k , those linear in

Ak and their derivatives into σ
(1)
k , and the quadratic terms into σ

(2)
k

(4.12) = σ
(0)
k + σ

(1)
k + σ

(2)
k (4.13)

4.3 Calculating integrals

Now we calculate the integral (4.12). To this end, note that since Fk’s satisfy the equations

x(1 − x)F ′′
k (x) +

(

k + 1 −
(

k +
1

2

)

x

)

F ′
k(x) − k(k − 1)

4
Fk(x) = 0 (4.14)

the functions Ak(x) =
Fk−1(x)
Fk−1(1)

− x satisfy

x(1 − x)A′′
k +

(

k −
(

k − 1

2

)

x

)

A′
k − (k − 1)(k − 2)

4
Ak =

k(k + 1)

4
x − k (4.15)

The terms

σ
(0)
k =

∫
dx

(1 − x)3/2
k2xk−1

(

1 − x

2
x − x2

4

)

(4.16)

and

σ
(1)
k =

∫
dx

(1 − x)3/2

{

−kxk+1A′
k + xk−1

(

k

(

1 +
1

2
x

)

− 1

2
k(k − 1)x − 3(2 − x)k

2(1 − x)

)

Ak

}

(4.17)

are immediately5 reduced to (2.27), while in order to calculate

σ
(2)
k =

∫
dx

(1 − x)3/2

{

xk(1 − x)(A′
k)2 + 2xk−1

(
k − 1

2
− (k − 2)x

2
+

3x

2(1 − x)

)

AkA
′
k+

+xk−2

(
(k − 1)2

2
− (k − 2)2x

4
+

3(k−2)x

2(1−x)
+

15x

4(1−x)2

)

A2
k− (4.19)

we integrate the first term by parts and make use of (4.15):

∫
dx

(1 − x)3/2
xk(1−x)(A′

k)2 = lim
x→1−0

xkAkA
′
k√

1 − x
(4.20)

−
∫

xk−1dx

(1−x)3/2

(

x(1 − x)A′′
k+
(

(1−x)k+
x

2

)

A′
k

)

Ak

= lim
x→1−0

xkAkA
′
k√

1 − x

−1

4

∫
xk−1dx

(1−x)3/2

(

(k−1)(k−2)A2
k +
(
k(k+1)x−4k

)
Ak

)

5Since

−

Z

dx

(1 − x)3/2
kxk+1A′

k = − lim
x→1−0

kAkxk+1

(1 − x)3/2
+

Z

Akxkdx

(1 − x)3/2

“

k(k + 1) +
3kx

2(1 − x)

”

, (4.18)
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Integrating by parts the second term in (4.19) we obtain:

∫
xk−1dx

(1 − x)3/2

(
k − 1

2
− (k − 2)x

2
+

3x

2(1 − x)

)

(2AkA
′
k)

= lim
x→1−0

xk−1A2
k

(1 − x)3/2

(
k − 1

2
− (k − 2)x

2
+

3x

2(1 − x)

)

−

−
∫

xk−2dx

(1 − x)3/2

(
(k − 1)2

2
− k(k − 2)x

2
+

3kx

2(1 − x)

+
3x

2(1 − x)

(
k − 1

2
− (k − 2)x

2

)

+
15x2

4(1 − x)2

)

A2
k (4.21)

Collecting all the terms with A2
k,

∫
A2

kx
k−2dx

(1−x)3/2

{(
(k−1)2

2
− (k−2)2x

4
+

3(k−2)x

2(1−x)
+

15x

4(1−x)2

)

− (k−1)(k−2)x

4
− (4.22)

−
(

(k−1)2

2
− k(k−2)x

2
+

3kx

2(1−x)

+
3x

2(1−x)

(
k−1

2
− (k−2)x

2

)

+
15x2

4(1−x)2

)}

=

∫
A2

kx
k−1dx

(1−x)3/2

{
k−2

4

(

−(k−2)−(k−1) + 2k
)

+
3

2(1−x)

(

k−2 +
5

2
−k−

(
k−1

2
− (k−2)x

2

))}

∫
A2

kx
k−1dx

(1−x)3/2

{
3(k−2)

4
+

3

4(1−x)

(

1−(k−1) + (k−2)x
)}

= 0

and one remains only with

lim
x→1−0

xkAkA
′
k√

1 − x
− 1

4

∫
xk−1dx

(1 − x)3/2

(
k(k + 1)x − 4k

)
Ak (4.23)

which is the same as σ
(2)
k in (2.27), since the boundary term vanishes.

5. Conformal symmetry

In our ADS3-restricted problem the global conformal symmetry of [5, 16, 28, 30, 31] reduces

to SL(2) with three complex-valued generators. In what follows we use the formulation

of [31].

5.1 SL(2) action at the boundary

When acting on a functional F{z(s)} of parameterized curve Π : S1 → C, the three

– 23 –



J
H
E
P
0
7
(
2
0
0
8
)
0
2
4

generators are

Ĵ−F =

∮
δF

δz(s)
ds,

Ĵ0F =

∮

z
δF

δz(s)
ds,

Ĵ+F =

∮

z2 δF

δz(s)
ds (5.1)

There are additional three complex-conjugate operators. Since in [31] the general situation

(beyond complex plane) is considered, the third generator in (5.1) was written in a more

general form

~̂ −J =

∮

ds
δ

δ~y(s)
,

Ĵ0 =

∮

ds

(

~y(s)
δ

δ~y(s)

)

,

~̂
+J =

∮

ds

{

2~y(s)

(

~y(s)
δ

δ~y(s)

)

− ~y 2(s)
δ

δ~y(s)

}

(5.2)

They are ~J− =
(
J−, J̄−

)
, J0 = J0 + J̄0 and ~J+ =

(
J+, J̄+

)
in our situation.

We now need to express these generators in terms of hk variables. From z = ζ +
∑

k hkζ
k, z̄ = ζ̄ +

∑

k h̄k ζ̄
k and

δF =

∮
δF

δz(s)
δz(s)ds +

∮
δF

δz̄(s)
δz̄(s)ds

=
∑

k

δhk

∮
δF

δz(s)
ζk(s)ds +

∑

k

δh̄k

∮
δF

δz̄(s)
ζ̄k(s)ds (5.3)

we conclude that
∮

δF

δz(s)
ζk(s)ds =

∂F

∂hk
,

∮
δF

δz̄(s)
ζ̄k(s)ds =

∂F

∂h̄k
(5.4)

Therefore

Ĵ− =
∂

∂h0
,

Ĵ0 =
∂

∂h1
+

∞∑

k=0

hk
∂

∂hk
,

Ĵ+ =
∂

∂h2
+ 2

∞∑

k=0

hk
∂

∂hk+1
+

∞∑

k,l=0

hkhl
∂

∂hk+l
(5.5)

5.2 Invariance properties of h-series: a surprise

It is easy to check that (1.6) is invariant under these SL(2) transformations, while (1.7) is

not. Indeed, Ĵ− annihilates all h-series that do not contain h0 — and both (1.6) and (1.7)

belong to this class.
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The relevant properties of the coefficients in (1.6) are:

C1k = Bk, C11 = C12 = 0, C2k = 2Bk+1,

V1kl = 2Ckl, V2kl + 2Ak+l = 2 (Ck,l+1 + Ck+1,l) (5.6)

Uij;1l = Cij , Uij;2l = 2Cij

They are indeed satisfied by the coefficients B(D), C(D), V (D) and U (D) in (1.6). At the

same time for (1.7) CA
22 6= 2BA

3 !

This fact is somewhat surprising because one could expect the opposite result: the

double integral DΠ is not a priori annihilated by Ĵ+1, while AΠ is shown to be invariant [31].

In particular, the BDS formula is known to satisfy (anomalous) conformal Ward identities

for all Π [5, 16, 28, 30, 31]. Indeed, dilogarithms in the BDS formula [36] depend only on

invariant cross-ratios, while logarithms reproduce the anomaly part of the Ward identity.

5.3 Invariance of the double integral

To explain the invariance of the double integral, one should note that the integrand in DΠ

is obviously not invariant under the projective transformations generated by (5.1), instead

it changes by a total derivative. Therefore, as soon as the integral diverges, one has to be

careful with its invariance. Indeed, one can easily see the divergent part is not projective-

invariant: it is proportional to the curves length L =
∮

dl =
∮ √

ż ˙̄zds, which transforms as

follows:

Ĵ−L = 0, Ĵ0L =
L

2
, Ĵ+L =

∮

zdl (5.7)

as can be read off from formulae (5.1).

At the same time, this quite formal calculation can be confirmed from explicit manip-

ulations with the h-series. When J0 from (5.5) acts on L which is given by formula (1.16)

with h1 and h̄1 switched on, then it converts the typical term in the h series for L,

√

(1 + h1)(1 + h̄1)

(
h

1 + h1

)p( h̄

1 + h̄1

)q

(5.8)

into

Ĵ0

√

(1 + h1)(1 + h̄1)

(
h

1 + h1

)p( h̄

1 + h̄1

)q

(5.9)

=

[

p −
(

p − 1

2

)]√

(1 + h1)(1 + h̄1)

(
h

1 + h1

)p( h̄

1 + h̄1

)q

i.e.

Ĵ0L =
L

2
(5.10)

as required in (5.7).

Similarly, one can use the explicit form of Ĵ+ in terms of h,

Ĵ+ = h2
0

∂

∂h0
+ 2h0Ĵ0 + (1 + h1)

2 ∂

∂h2
+ 2(1 + h1)

∑

k=2

hk
∂

∂hk+1
+
∑

k,l≥2

hkhl
∂

hk+l
(5.11)
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and act with it on L from (1.16),

1

2π

∮

dl = |1 + h1| +
1

4

∑

k=2

k2|hk|2
|1 + h1|

(5.12)

− 1

16

∞∑

k,l=2

kl(k + l − 1)

[

hkhlh̄k+l−1

(1 + h1) |1 + h1|
+

h̄kh̄lhk+l−1
(
1 + h̄1

)
|1 + h1|

]

+ . . .

to obtain

Ĵ+
L

2π
= 2h0

(

Ĵ0
L

2π

)

+ (1 + h1)
2

[

22

4
h̄2 −

1

16

2 · 2
(1 + h1)|1 + h1|

∑

k=2

k(k + 1)hkh̄k+1

]

+

+2(1 + h1)
1

4|1 + h1|
∑

k=2

(k + 1)2hkh̄k+1

=
h0

2π

∮

dl + (1 + h1)
2 h̄2

|1 + h1|
+
∑

k=2

(k + 1)(k + 2)

4

1 + h1

|1 + h1|
hkh̄k+1

=
1

2π

∮

zdl (5.13)

in accordance with (5.7). Note that this calculation depends on the explicit form of h3-

terms.

5.4 On symmetries of the minimal area

First of all, the r.h.s. of the anomalous Ward identity (A.19) in [31] vanishes in our smooth

n = ∞ limit. Therefore, according to [31] the minimal area is conformal invariant! – what

seems to contradict apparent non-invariance of AΠ.

For an a priori check of the symmetry of the minimal action one needs to extend the

action of SL(2) from the boundary to entire AdS space. The group action is [31]:

r → r

1 + 2~β~y + ~β2(r2 + ~y2)
,

~y → ~y + ~β(r2 + ~y2)

1 + 2~β~y + ~β2(r2 + ~y2)
(5.14)

At the boundary r2 = 0 it reduces to the projective transformation z → z+β̄z2+O(β). The

problem is that for r2 6= 0 the action of Ĵ+ on z transforms it into non-holomorphic function

of ζ. Application of the Gauss-Riemann decomposition is needed to restore holomorphicity,

what can imply a more sophisticated action on h-variables beyond the boundary. It can

happen that such modifications involve µ-linear terms, which can generate µ-finite correc-

tions from the variation of L/µ contributions. This is also a kind of anomaly — which

needs to be studied more accurately. This anomaly in conformal symmetry (5.5) is a part

of a larger anomaly for n = ∞ discovered in this paper, which, in its turn, generalizes the

Alday-Maldacena result, [23]. A similar anomaly for n = 6 was recently found in [30], see

also a fresh additional evidence in [40, 41].
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A. h-series representation of reparametrization invariants at the bound-

ary

Here we express the circumference of the deformed circle and the integral of logarithm of

its curvature as functions of coefficients hk up to the second order in these coefficients (we

still put h1 = h̄1 = 0).

With the conformal map

z = eiϕ +
∞∑

k=0

hke
ikϕ (A.1)

the square of length element is

dl2 =

∣
∣
∣
∣

dz

dϕ

∣
∣
∣
∣

2

=
∣
∣
∣1 +

∑

khke
i(k−1)ϕ

∣
∣
∣

2

= 1 + 2

∞∑

k=1

Re
(

khke
i(k−1)ϕ

)

+

∞∑

k,l=1

klRehkh̄le
i(k−l)ϕ (A.2)

Integration along the circle over dϕ
2π converts the sums of exponentials in the following way:

∞∑

k=2

f(k)Re
(

hke
i(k−1)ϕ

)

−→ 0 (A.3)

∞∑

k,l=1

Ref(k, l)hkh̄le
i(k−l)ϕ −→

∞∑

k=1

f(k, k)|hk|2

{ ∞∑

k=1

f(k)Re
(

hke
i(k−1)φ

)
}{ ∞∑

k=1

g(k)Re
(

hke
i(k−1)φ

)
}

−→ 1

2

∞∑

k=1

f(k)g(k)|hk |2

Keeping this in mind, one gets

1

2π
L =

∫

dl = 1 +
1

4

∞∑

k=1

k2|hk|2 + O(h3) (A.4)
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Proceed now to curvature and its derivatives. The first local reparametrization invari-

ant (scalar) of a curve is its scalar curvature,

κ =
Im
(

z̈ ˙̄z
)

|ż ˙̄z|3/2
(A.5)

and

1

2π

∫

log κdl = −1

4

∞∑

k=1

(k2 − 4k + 5)k2|hk|2 (A.6)

Similarly, one can calculate dκ/dϕ, κ̇ ≡ dκ/dl and the integral of square of this latter, the

result reads

1

2π

∫ (
dκ

dl

)2

dl =
1

2

∞∑

k=3

(

k(k − 1)(k − 2)
)2

|hk|2 (A.7)

B. An alternative calculation of DΠ by r′/r regularization

In this appendix, we compute the double contour integral DΠ to the quadratic order,

regularizing the integral by making the relative size of the two radii r, r′ associated with

the two circular line integrals in ζ plane different from unity. This is a version of c-

regularization, an alternative regularization to the “λ” regularization in the text. Let

rr′ = 1, z = H(ζ) = ζ + h(ζ).

DΠ =

∮

Πr

∮

Πr′

1
2(dzdz̄′ + dz̄dz′)

(z − z′)(z̄ − z̄′)
= D

(0)
Π + D

(1)
Π + D

(2)
Π + O(h3), (B.1)

where D
(i)
Π , i = 0, 1, 2 denote order h0, h1 and h2 contribution to DΠ respectively. It is

immediate to see that D
(1)
Π = 0 and

D
(0)
Π =

∮

|ζ|=r

∮

|ζ′|=r′

1
2 (dζdζ̄ ′ + dζ̄dζ ′)

(ζ − ζ ′)(ζ̄ − ζ̄ ′)
. (B.2)

After splitting the double integral into that over total and relative angles, Φ and ϕ, (B.2)

becomes a simple Poisson integral:

2(2π)a

∫ π

−π

cos ϕdϕ

1 − 2a cos ϕ + a2
= 2(2π)2

(
1

1 − a2
− 1

)

. (B.3)

where a ≡ r′

r . As for D
(2)
Π , after some calculation, we obtain

D
(2)
Π =

∑

k,ℓ

hkh̄ℓ

[
1

2

∮ ∮

dζdζ̄ ′
ζk−1ζ̄ ′ℓ−1fk(ζ

′/ζ)fℓ(ζ̄/ζ̄ ′)

(ζ − ζ ′)(ζ̄ − ζ̄ ′)
(B.4)

+
1

2

∮ ∮

dζ̄dζ ′
ζ ′k−1ζ̄ℓ−1fk(ζ/ζ ′)fℓ(ζ̄

′/ζ̄)

(ζ − ζ ′)(ζ̄ − ζ̄ ′)

]

,
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where

fk(x) =
1 − xk

1 − x
− k. (B.5)

We put a = 1, since the integral is finite at this point. Making a change of variables

ζ = ei(Φ− 1
2
ϕ), ζ ′ = ei(Φ+ 1

2
ϕ), w = eiϕ, and carrying out the dΦ integral, we obtain

− (2π)2
∑

k

|hk|2
[∮

dw

2πi

w−kfk(w)2

(1 − w)2
+ c.c.

]

= −2(2π)2
∑

k

|hk|2
(

k−1∑

i=0

cick−1−i

)

= −2(2π)2Q
(2)
Π , (B.6)

where cℓ with ci = −(k − 1) + i, for 0 ≤ i ≤ k − 1 are the Taylor coefficients

fk(x)

(1 − x)
=

∞∑

n=0

cnxn. (B.7)

Eq. (B.6) agrees with the result (1.6) of calculations in the λ regularization.

To summarize,

DΠ = 2(2π)2
(

1

1 − a2
− 1

)

− 2(2π)2Q
(2)
Π + O(h3). (B.8)

Higher order computation can be carried out as is in the main text.

C. Circle vs. rectangular

In this appendix, we comment on technical differences between the long rectangular that

was considered in [23] and the deformed circle we consider in the paper.

C.1 Asymptotic behavior of r near the boundary

First of all, let us consider the behaviour of solution to the NG equation. From (2.2) in

the leading order in y⊥ and y|| we get

r =

√

2y⊥ − κy2
||

κ
(C.1)

where κ is the curvature (inverse radius of the tangent circle) at the given point of the

boundary. This can be considered as a limit near the boundary of exact circle solution (2.4),

r =
√

κ−2 − (κ−1 − y⊥)2 − y2
|| (C.2)

Technically the contribution to (2.2) in this order comes from

∂⊥r =
1

κr
,

∂2
⊥r = − 1

κ2r3
,

∂2
||r = −1

r
+ O(y2

||) (C.3)
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the first derivative ∂||r and the mixed derivative ∂⊥∂||r are proportional to y|| and can be

neglected. Then the relevant terms in (2.2) are

2(∂⊥r)2 + r∂2
⊥r + r(∂⊥r)2∂2r = r(∂⊥r)2∂2

⊥r (C.4)

Since at r → 0 the second derivative ∂2
||r ≪ ∂2

⊥r, it can be neglected in the r∂2r term,

but it contributes to the r4 terms, because it is multiplied by a large factor ∂⊥r. These

two r4 terms actually combine into r(∂⊥r)2∂2
||r at the l.h.s. and this contribution is crucial

for (C.2) to be a solution to (2.2): the three terms at the l.h.s. contribute 2 − 1 − 1 = 0.

Already from this calculus it is clear that things will go wrong if (C.2) does not depend

on y||. This happens when the boundary straightens, κ = 0, even at a single point - nothing

to say about the boundary containing entire straight segments like in [23].6 The problem is

already seen in (C.2): κ enters also as a normalization factor and stands in the denominator.

Clearly, at κ = 0 asymptotics (C.2) is seriously modified, actually it is substituted by

r ∼ 3
√

y⊥, (C.5)

(note that 3
√

y⊥ ≫ √
y⊥ at small y⊥). The interpolating formula

2y⊥ − κy2
|| = κr2 + const · r3 + O(r4) (C.6)

The situation gets even more tricky if convexity of the curve Π̄ is changed: solu-

tion (C.2) turns imaginary at the other side of the boundary — i.e. simply fails to exist.

This means that, near the boundary, the minimal surface is locally bent towards the center

of curvature of the boundary.

In any case we see that at n = ∞ the Π̄ with some straight segments is a kind of a

very special limit, considerably different from generic situation. This can imply that the

long-rectangular example of [23], despite its seeming simplicity can actually be non-trivial

and require a more serious analysis. We, however, restrict ourselves to a brief reminder of

that example in the next subsection.

C.2 An example of rectangular

We calculate here the minimal area of the rectangular and demonstrate it does not look

like the double contour integral [46].

We consider a very long rectangular of the length L‖ and the width L so that the

solution to the NG equations depends on the only perpendicular variable y⊥ = y. Then,

the solution r(y) is easier written in terms of the inverse function

y(r) =

∫ r

0

ξ2dξ
√

C4 − ξ4
= −CD

(

arcsin
r

C
, i
)

6It deserves emphasizing that we speak here about a straight segment in projection Π̄ in the n = ∞

limit: this argument is non-applicable neither to the light-like straight segments which compose Π, nor to

the finite-n polygons, where Π̄ consists of straight segments, but y0 can not be neglected, as in [1, 12, 26].
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for 0 ≤ y ≤ L/2 and the opposite sign of the root for L/2 ≤ y ≤ L. D(x, k) ≡
F (x, k) − E(x, k) here is the difference of elliptic integrals of the first and the second

kinds respectively. Then,

L = 2y(C) = 2
√

2C

(

E − K

2

)

= 2
√

2C
π

4K

where E and K are complete elliptic integrals of the first and the second kinds respectively

taken at the value of elliptic modulus k = k′ = 1/
√

2. Note that in this lemniscata point

K = Γ(1/4)2

4
√

π
and, using the Legendre formula

KE′ + K ′E − KK ′ =
π

2

for the four complete elliptic integrals with complimentary modulus, one immediately ob-

tains E = π
4K + K

2 . Then, one obtains

L =
πC√
2K

, i.e. C =

√
2KL

π

The area is (µ2 is the regulator)

S = 2L‖C
2

∫ C

0

dr

(r2 + µ2)
√

C4 − r4
=

2L‖
C

∫ 1

0

dr

(r2 + µ2)
√

1 − r4

=

√
2L‖
C

1

1 + µ2
Π

(

− 1

1 + µ2
,

1√
2

)

(C.7)

where Π(ν, k) is the complete elliptic integral of the third kind. Its asymptotics can be

found from the relation

k′2 sin θ cos θ

1 − k′2 sin2 θ

[

Π
(

− (1 − k′2 sin2 θ), k
)

− K
]

=
π

2
− (E − K)F (θ, k′) − KE(θ, k)

and using F (θ, k) = θ + O(θ3), E(θ, k) = θ + O(θ3):

Π

(

− 1

1 + µ2
,

1√
2

)

=
π√
2µ

− π

2K
+ O(µ)

Then, the area

S =
πL‖
C

(
1

µ
− 1√

2K

)

=
π2L‖√
2KL

(
1

µ
− 1√

2K

)

The finite piece in this answer is

Sfin = −
π2L‖
2KL

= − (2π)3

Γ(1/4)4
L‖
L

(C.8)

This result has to be compared with the double contour integral. Its finite part comes from

the case when y and y′ belong to two different parallel lines (when they belong to the same

line one gets the contribution to the divergent term)

2L‖

∫ +∞

−∞

dξ

ξ2 + L2
= 2π

L‖
L

(C.9)
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The difference between 2π in (C.9) and the coefficient in (C.8) is the confusing problem

discovered in [23]. One can formulate our result as a non-trivial generalization of this

statement:

• A similar coefficient discrepancy exists for a circle of arbitrary shape, but only few

of infinitely many coefficients are different.

D. MAPLE programs

We append here two simple MAPLE programs that one can use for evaluating the minimal

area and the double contour integral (the latter one up to any given order in h). Using this

program to obtain the area up to h4 order and higher requires the knowledge of solution

to the NG equation up to this order.

D.1 Calculation of AΠ

Literally, this program calculates the finite part CCfin of the coefficient in front of the

cubic term hkhlh̄k+l−1. It uses the explicit form (2.19) of the NG-harmonic functions.

>dH:=z->1+s*dh(z): dHH:=z->1+s*dhh(z):r2:=1-z*zz+s*a(z,zz):

>

> S:=sqrt( dH(z)*dHH(zz)*(dH(z)*dHH(zz)*r2 + diff(r2,z)*diff(r2,zz)) )/r2^(1/2)/(r2+mu^2);

>

> SS:=mtaylor(simplify(mtaylor(S,s,1)*(1-z*zz+mu^2)^(3/2)),c,2);

> SL:=simplify(simplify(mtaylor(S,s,2)-mtaylor(S,s,1))*(1-z*zz+mu^2)^(5/2)/s);

> SQ:=simplify(simplify(mtaylor(S,s,3)-mtaylor(S,s,2))*(1-z*zz+mu^2)^(7/2)/s^2):

> SC:=simplify(simplify(mtaylor(S,s,4)-mtaylor(S,s,3))*(1-z*zz+mu^2)^(9/2)/s^2):

>

> A:=(k,z,zz)->(1+(k-1)*sqrt(1-z*zz))*(1-sqrt(1-z*zz))^(k-1)/(z*zz)^(k-1)-z*zz;

> K:=5: L:=5: M:=K+L-1:

> h:=z->h[K]*z^K+h[L]*z^L; hh:=z->hh[M]*z^(M);

>

> dh:=z->diff(h(z),z); dhh:=z->diff(hh(z),z);

> a:=(z,zz)-> h[K]*z^(K-1)*A(K,z,zz) + h[L]*z^(L-1)*A(L,z,zz) + hh[M]*zz^(M-1)*A(M,z,zz) ;

> diff(a(z,zz),z):

> SS1:=simplify(SS);

> SL1:=simplify(SL);

> SQ1:=simplify(SQ);

> SC1:=simplify(SC);

>

> z:=sqrt(X)*exp(I*phi): zz:=sqrt(X)*exp(-I*phi):

> #simplify(SL1);

> SLI:=factor(int(simplify(SL1),phi=0..2*Pi)/2/Pi);

> SQI:=factor(int(simplify(SQ1),phi=0..2*Pi)/2/Pi);

> SCI:=factor(int(simplify(SC1),phi=0..2*Pi)/2/Pi);

>

> LL:=factor(int(SLI/((1-X+mu^2)^(5/2)),X=0..1));

> QQ:=factor(int(SQI/((1-X+mu^2)^(7/2)),X=0..1));

> CC:=factor(int(SCI/((1-X+mu^2)^(9/2)),X=0..1));

>

> QQQ:=coeff(QQ,arctan(1/mu)); QQQQ:=subs(mu=0,simplify(QQ-QQQ*arctan(1/mu)));
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> QQdiv:=coeff(simplify(QQQ*mu*(1+mu^2)^7),mu,0);

> QQfin:=simplify(QQQQ-QQdiv);

>

> CCC:=coeff(CC,arctan(1/mu)); CCCC:=subs(mu=0,simplify(CC-CCC*arctan(1/mu)));

> CCdiv:=coeff(simplify(CCC*mu*(1+mu^2)^11),mu,0);

> CCfin:=simplify(CCCC-CCdiv);

D.2 Calculation of DΠ

N here denotes the number of switched on hk, NN ≤ k ≤ N , and the calculation is

performed with the accuracy O(hN ).

> p:=3:

> NN:=0: N:=6:

>

> # theta=Phi, phi = varphi

>

> U:=exp(2*I*phi) + t*sum( (k*h[k]*exp(I*(k-1)*theta) +

> k*hh[k]*exp(-I*(k-1)*theta))*exp(I*(k+1)*phi), k=NN..N) +

> t^2*sum(sum( k*l*h[k]*hh[l]*exp(I*(k-l)*theta)*exp(I*(k+l)*phi),

> l=NN..N),k=NN..N) + exp(-2*I*phi) +

> t*sum( (k*hh[k]*exp(-I*(k-1)*theta) +

> k*h[k]*exp(I*(k-1)*theta))*exp(-I*(k+1)*phi), k=NN..N) +

> t^2*sum(sum( k*l*hh[k]*h[l]*exp(-I*(k-l)*theta)*exp(-I*(k+l)*phi),

> l=NN..N),k=NN..N);

>

> V:= simplify(1 + t*sum( simplify(sin(k*phi)/sin(phi))*(h[k]*exp(I*(k-1)*theta)+

> hh[k]*exp(-I*(k-1)*theta)), k=NN..N) +

> t^2*sum(sum( simplify(sin(k*phi)/sin(phi)*sin(l*phi)/sin(phi))*(h[k]*hh[l]*

> exp(I*(k-l)*theta)+hh[k]*h[l]*exp(-I*(k-l)*theta))/2, l=NN..N), k=NN..N));

>

> Ra:=(mtaylor(U/2/(4*sin(phi)^2*V + lambda^2),t,p+1));

> RA:=simplify(int( Ra, theta = 0..2*Pi)/2/Pi-1/(4*sin(phi)^2) + 1/2);

>

> DI:=simplify(int( RA, phi=0..2*Pi )/2/Pi);
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